Multiscale Adaptive Regression Models for Neuroimaging Data.
نویسندگان
چکیده
Neuroimaging studies aim to analyze imaging data with complex spatial patterns in a large number of locations (called voxels) on a two-dimensional (2D) surface or in a 3D volume. Conventional analyses of imaging data include two sequential steps: spatially smoothing imaging data and then independently fitting a statistical model at each voxel. However, conventional analyses suffer from the same amount of smoothing throughout the whole image, the arbitrary choice of smoothing extent, and low statistical power in detecting spatial patterns. We propose a multiscale adaptive regression model (MARM) to integrate the propagation-separation (PS) approach (Polzehl and Spokoiny, 2000, 2006) with statistical modeling at each voxel for spatial and adaptive analysis of neuroimaging data from multiple subjects. MARM has three features: being spatial, being hierarchical, and being adaptive. We use a multiscale adaptive estimation and testing procedure (MAET) to utilize imaging observations from the neighboring voxels of the current voxel to adaptively calculate parameter estimates and test statistics. Theoretically, we establish consistency and asymptotic normality of the adaptive parameter estimates and the asymptotic distribution of the adaptive test statistics. Our simulation studies and real data analysis confirm that MARM significantly outperforms conventional analyses of imaging data.
منابع مشابه
MARM: Multiscale Adaptive Regression Models for Neuroimaging Data
We develop a novel statistical model, called multiscale adaptive regression model (MARM), for spatial and adaptive analysis of neuroimaging data. The primary motivation and application of the proposed methodology is statistical analysis of imaging data on the two-dimensional (2D) surface or in the 3D volume for various neuroimaging studies. The existing voxel-wise approach has several major lim...
متن کاملMultiscale adaptive generalized estimating equations for longitudinal neuroimaging data
Many large-scale longitudinal imaging studies have been or are being widely conducted to better understand the progress of neuropsychiatric and neurodegenerative disorders and normal brain development. The goal of this article is to develop a multiscale adaptive generalized estimation equation (MAGEE) method for spatial and adaptive analysis of neuroimaging data from longitudinal studies. MAGEE...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کاملMultiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area
Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Statistical Society. Series B, Statistical methodology
دوره 73 4 شماره
صفحات -
تاریخ انتشار 2011